
1. Loeb Measures

1.1 Introduction

Loeb measures, discovered by Peter Loeb in 1975 [71], are very rich stan-
dard measure spaces, constructed using nonstandard analysis (NSA). The
range of fields in which they have found significant applications is vast, in-
cluding measure and probability theory, stochastic analysis, differential equa-
tions (ordinary, partial and stochastic), functional analysis, control theory,
mathematical physics, economics and mathematical finance theory.

The richness of Loeb measures makes them good for
- constructing measures with special properties (for example the rich prob-

ability spaces of Fajardo & Keisler [49, 50, 62]);
- representing complex measures in ways that make them more manage-

able (for example Wiener measure) – see section 1.3.3 below;
- modelling physical and other phenomena;
- proving existence results in analysis – for example solving differential

equations (DEs) of all kinds (including partial DEs, stochastic DEs and even
stochastic partial DEs) and showing the existence of attractors.

Later lectures will describe some recent uses of Loeb spaces that illustrate
these themes – in fluid mechanics, in stochastic calculus of variations and
related topics, and in mathematical finance theory.

This lecture will outline the basic Loeb measure construction and give
some simple applications, with a little of the theory of Loeb integration.
From one point of view, Loeb measures are simply ultraproducts of previously
given measure spaces, such as were considered in an early paper of Dacunha-
Castelle & Krivine [46]. The rôle of NSA in their construction is to provide
a systematic way to understand their properties, which opens the way for
efficient and powerful applications; without this we would have a supply of
very rich measure spaces but only ad hoc means to comprehend them.

Necessarily these lectures will be somewhat informal and lacking in a
great deal of detail. The aim is to convey some of the basic ideas and flavour
of Loeb measures and how they work, as well as pointing to the literature
where the topics can be pursued in depth. We must begin with a brief and
informal look at NSA itself.
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1.2 Nonstandard Analysis

1.2.1 The hyperreals

Nonstandard analysis (discovered by Abraham Robinson in 1960 [83]) begins
with the construction of a richer real line ∗R called the hyperreals or non-
standard reals. This is an ordered field that extends the (standard) reals R

in two main ways:
(1) ∗R contains non-zero infinitesimal numbers; and
(2) ∗R contains positive and negative infinite numbers.
This is made precise by the following definitions (where | · | is the exten-

sion1 of the modulus function to ∗R).

Definition 1.1 Let x ∈ ∗R. We say that
(i) x is infinitesimal if |x| < ε for all ε > 0, ε ∈ R;
(ii) x is finite if |x| < r for some r ∈ R;
(iii) x is infinite if |x| > r for all r ∈ R.
(iv) We say that x and y are infinitely close, denoted by x ≈ y, if x− y is

infinitesimal. So x ≈ 0 is another way to say that x is infinitesimal.
(v) The monad of a real number r is the set

monad(r) = {x : x ≈ r}

of hyperreals that are infinitely close to r. Thus monad(0) is the set of in-
finitesimals, and monad(r) = r + monad(0).

Of course, once a field has non-zero infinitesimals, then there must be
infinite elements also – these are the reciprocals of infinitesimals. It follows
also that R is enriched in having, for each r ∈ R, new elements x with x ≈ r
(taking x = r + δ where δ is infinitesimal).

One way to construct ∗R is as an ultrapower of the reals

∗R = RN/U

where U is a nonprincipal ultrafilter2 (or maximal filter) on N.
That is, ∗R consists of equivalence classes of sequences of reals under the

equivalence relation ≡U , defined by

(an) ≡U (bn) ⇐⇒ {n : an = bn} ∈ U .

Sets in U should be thought of as big sets, or more strictly U-big, with
those not in U designated U−small. The ultrafilter property means that every
1 This takes its values in ∗

R, and is defined just as in R, so that |x| = x if x ≥ 0
and |x| = −x if x < 0.

2 A nonprincipal ultrafilter U on N is a collection of subsets of N that is closed
under intersections and supersets, contains no finite sets, and for every set A ⊆ N

has either A ∈ U or N \ A ∈ U .
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set is either U-big (those in U) or U-small (those not in U). It is convenient
to use the terminology U-almost all to mean “for a set A of natural numbers
with A ∈ U”.

Using this terminology we can say that the equivalence relation ≡U iden-
tifies sequences (an) and (bn) that agree on a U-big set of indices n, or that
agree U-almost always.

We denote the equivalence class of a sequence (an) by (an)U (sometimes
the notation [(an)] is used instead). The reals R are identified with the equiv-
alence classes of constant sequences, so that ∗R is then an extension of R.
The algebraic operations +,× and the order relation < are extended to ∗R
pointwise (after checking that this is safe); strictly the extensions should be
denoted ∗+, ∗×, ∗<, but there is usually no ambiguity if the ∗ is dropped.

It is almost immediate that an example of a non-zero infinitesimal is given
by (1, 1

2 ,
1
3 , . . .)/U .

The way to picture ∗R is as follows (note that some features in this diagram
are yet to be explained).

∗R

r 0 1 2 NN+1

r

monad(r) = {x ∈ ∗R : x ≈ r}
Infinitesimal microscope

�

�

�

�

� �
infinite elements

r 0 1 2

R

standard part mapping

�

�

The Hyperreals

With the above construction of ∗R it is easy to prove:

Theorem 1.2 (∗R,+,×, <) is an ordered field.

Exercise Prove this! Most of the field axioms follow easily from the fact
that they hold at each co-ordinate of the representing sequences. The axiom
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of inverses is not quite so obvious. If x = (an)U 	= 0 then we could have
an = 0 for some indices n. As a hint, note that nevertheless we have an 	= 0
for U-almost all n, so we can define y = (bn)U with bn = a−1

n for those n. For
the remaining U-small set of n define bn = 0. Now show that xy = 1.

The axioms for an ordered field are proved in somewhat similar fashion.
To see what else can be said about ∗R, first note that all functions f and

relations R on R (including unary relations – that is, subsets of R) can be
extended to ∗R pointwise – with the extensions denoted by ∗f and ∗R say.3

As an exercise the reader might like to show that the extension ∗| · | of the
modulus function defined in this way is the same as that used in Definition
1.1; that is, if x = (an)U and y = ∗|x| = (|an|)U then y = x if x∗ ≥ 0 and
y = −x otherwise. Further, show that x is finite (according to Definition 1.1)
if there is some r ∈ R with |an| < r for U-almost all n, and x is infinitesimal
if, for every real ε > 0 we have |an| < ε for U-almost all n.

Important examples of extensions of relations include ∗N, ∗Z and ∗Q, the
sets of hypernatural numbers, hyperintegers and hyperrationals respectively.
A hyperrational number is thus an element x = (an)U with an ∈ Q for
U-almost all n.

It is not hard to see that the properties of functions f and relations R are
transferred to (or inherited by) ∗f and ∗R – for example, if f is an injection,
so is ∗f , and if R is an equivalence relation then so is ∗R. If f : A → B then
∗f : ∗A→ ∗B. Moreover, connections between functions and relations are also
transferred – for example ∗sin2 x+∗cos2 x = 1 for all x ∈ ∗R. The full extent of
this idea is described neatly by the Transfer Principle discussed below. First
let us write

R = (R, (f)f∈F , (R)R∈R)

for the full structure with domain R together with every possible function
and relation on it, and then write

∗R = (∗R, (∗f)f∈F , (∗R)R∈R).

The following fundamental result gives the complete picture as to which
properties of R are inherited by (or transferred to) ∗R.

Theorem 1.3 (Transfer Principle) Let ϕ be any first order statement.
Then

ϕ holds in R ⇐⇒ ∗ϕ holds in ∗R

A first order statement ϕ (respectively ∗ϕ) is one that refers to elements
of R (respectively ∗R), both fixed and variable, and to fixed relations and
functions f,R (respectively ∗f, ∗R). First order statements can use the usual
3 By the pointwise extension of a binary relation R ⊂ R × R, say, we mean that

((an)U , (bn)U ) ∈ ∗R ⇔ (an, bn) ∈ R for U-almost all n; so ∗R ⊂ ∗
R × ∗

R. It is easy
to see that this is equivalent to defining ∗R using a pointwise extension of the
characteristic function – i.e. χ∗R((an)U , (bn)U ) = (χR(an, bn))U .
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logical connectives of mathematics, namely and (symbolically ∧), or (∨),
implies (→) and not (¬). Moreover, we can quantify over elements (∀x, ∃y)
but not over relations or functions (so ∀f,∃R are not allowed). Here are some
illustrations of this.
1. Density of the rationals in the reals.

The density of the rationals in the reals can be expressed by a first order
statement ϕ that is a formal version of the following.

Between every two distinct reals there is a rational.
We could for example take ϕ as the statement

∀x∀y (x < y → ∃z(z ∈ Q ∧ (x < z < y)))

The transfer principle tells us that ∗ϕ holds in ∗R which means that the
hyperrationals are dense in the hyperreals.
2. Discreteness of the ordering of the integers.

This can be expressed by a first order statement ψ which is a formal
version of the following.

Every n ∈ Z has an immediate predecessor and successor in Z .
The Transfer Principle tells us that ∗ψ holds in ∗R which means that

Every n ∈ ∗Z has an immediate predecessor and successor in ∗Z .
Thus the discreteness of Z is inherited by ∗Z.

The reader is invited to check that the immediate predecessor and suc-
cessor of a hyperinteger (mn)U ∈ ∗Z are given by (mn ∓ 1)U . Likewise the
density of the hyperrationals can be established quite easily from first prin-
ciples (if x = (an)U and y = (bn)U then take z = (cn)U with an < cn < bn
where possible). The proof of the Transfer Principle is just a generalisation
of the procedure involved in a direct verification of these two examples. The
Transfer Principle itself avoids the need to verify properties of ∗R on an ad
hoc basis, and instead gives us all properties from the beginning.

A key result that allows us to get back to R from ∗R (and extends to more
general topological situations) is the following (recall the definition 1.1 of a
finite hyperreal).

Theorem 1.4 (Standard Part Theorem) If x ∈ ∗R is finite, then there
is a unique r ∈ R such that x ≈ r; i.e. any finite hyperreal x is uniquely
expressible as x = r + δ with r a standard real and δ infinitesimal.

Proof Put r = sup{a ∈ R : a ≤ x} = supA, say. The set A is nonempty
and bounded above (in R) since x is finite, and so the least upper bound r
exists. It is routine to check that |x− r| < ε for every real ε > 0. ��

Definition 1.5 (Standard Part) If x is a finite hyperreal the unique real
r ≈ x is called the standard part of x.
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For a finite hyperreal x ∈ ∗R there are two notations (both useful) for the
standard part of x:

◦x = st(x) = the standard part of x.

On occasions, when considering extended real valued functions (with val-
ues in R = R ∪ {−∞,∞}), it is convenient to write ◦x = ±∞ if x is positive
(resp. negative) infinite.
Remark The Standard Part Theorem is equivalent to the completeness of
R.

The next two theorems illustrate the way in which real analysis develops
using the additional structure of ∗R. For the sake of completeness we give brief
proofs that provide a flavour of the nonstandard methodology, and especially
the use of the Transfer Principle.

For a full account of the development of real analysis using infinitesimals,
see any of the references [30, 54, 47, 56, 58, 60, 69].

For the following, note that since a sequence s = (sn)n∈N of reals is just
a function s : N → R, its nonstandard extension ∗s = (sn)n∈∗N is simply a
function ∗s : ∗N → ∗R.

Theorem 1.6 Let (sn) be a sequence of real numbers and let l ∈ R. Then

sn → l as n→∞ ⇐⇒ ∗sK ≈ l for all infinite K ∈ ∗N.

Proof Suppose first that sn → l, and fix infinite K ∈ ∗N. We have to show
that |∗sK − l| < ε for all real ε > 0.

For any such ε there is a number n0 ∈ N such that the following holds in
R:

∀n ∈ N[n ≥ n0 → |sn − l| < ε]

The Transfer Principle now tells us that

∀N ∈ ∗N[N ≥ n0 → |∗sN − l| < ε]

is true in ∗R. In particular taking N = K we see that |∗sK− l| < ε as required.
Conversely, suppose that ∗sK ≈ l for all infinite K ∈ ∗N. Then, for any

given real ε > 0, we have

∃K ∈ ∗N ∀N ∈ ∗N[N ≥ K → |∗sN − l| < ε]

The Transfer Principle applied to this statement shows that in R:

∃k ∈ N∀n ∈ N[n ≥ k → |sn − l| < ε]

Taking n0 to be any such k proves that sn → l. ��
For the next result note that if f is a real function defined on the open

interval ]a, b[ then ∗f is defined on the hyperreal interval ∗]a, b[= {x ∈ ∗R : a <
x < b}, and takes values in ∗R.
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Theorem 1.7 Let c ∈]a, b[ (where a, b, c ∈ R) and f :]a, b[→ R. Then

f is continuous at c ⇐⇒ ∗f(z) ≈ f(c) whenever z ≈ c in ∗R.

Proof The proof is very similar to that of Theorem 1.6. Suppose first
that f is continuous at c, and fix a hyperreal z ≈ c. We have to show that
|∗f(z)− f(c)| < ε for all real ε > 0.

For any such ε there is a number 0 < δ ∈ R such that the following holds
in R:

∀x[|x− c| < δ → |f(x)− f(c)| < ε]

The Transfer Principle now tells us that

∀X[|X− c| < δ → |∗f(X)− f(c)| < ε]

is true in ∗R. In particular taking X = z we see that |∗f(z) − f(c)| < ε as
required.

Conversely, suppose that |∗f(z)− f(c)| ≈ 0 for all z ≈ c in ∗R. Let a real
ε > 0 be given. Then taking Y to be any positive infinitesimal the following
holds in ∗R:

∃Y ∀X[|X− c| < Y → |∗f(X)− f(c)| < ε]

The Transfer Principle applied to this statement gives, in R:

∃y∀x[|x− c| < y → |f(x)− f(c)| < ε]

Taking δ to be any such y shows that f is continuous at c as required. ��

Before moving to the next section, it should be pointed out that there are
several other ways to construct the hyperreals. Moreover, the conventional
terminology is misleading in that different constructions do not necessarily
give isomorphic structures. All versions of the hyperreals however obey the
Transfer Principle, and this is all that is needed to do basic nonstandard
real analysis. Indeed, one perfectly workable approach to the subject is an
axiomatic one, which merely specifies that ∗R is an extension of R that obeys
the Transfer Principle. (This approach would be parallel to a development
of real analysis that proceeds without being concerned with any particular
construction of R, using only the assumption that R is a complete ordered
field.)

1.2.2 The nonstandard universe

To use Robinson’s ideas beyond the realm of real analysis, it is necessary to
repeat the construction of ∗R for any mathematical object M that might be
needed, giving a nonstandard version ∗M of M that contains ideal elements
(such as infinitesimals in the case of ∗R). M could be a group, ring, measure
space, metric space or any mathematical object, however complicated.
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Rather than construct each nonstandard extension ∗M as required, it is
more economical to construct at the outset a nonstandard version ∗V of a
working portion of the mathematical universe V that contains each object
M that might be needed. Then ∗V will contain ∗M for every M ∈ V. Such
a construction has the additional advantage that the corresponding Transfer
Principle preserves connections between structures as well as their intrinsic
properties.

Here, briefly, is the way it works. First, for most mathematical practice,
an adequate portion of the mathematical universe is the superstructure over
R, denoted by V = V(R), defined as follows.

V0(R) = R

Vn+1(R) = Vn(R) ∪ P(Vn(R)), n ∈ N

and
V = V (R) =

⋃
n∈N

Vn(R).

(If V (R) is not big enough to contain all the objects4 required, simply
replace the starting set R by a suitable larger set S, giving V = V (S).)

The next step is to construct a mapping ∗ : V (R) → V (∗R) which asso-
ciates to each object M∈ V a nonstandard extension ∗M∈ V (∗R). Roughly,
we have M ⊂ ∗M with ∗M\M consisting of “ideal” or “nonstandard” el-
ements. For example ∗N \ N consists of infinite (hyper)natural numbers; if
M is an infinite dimensional Hilbert space H together with its finite dimen-
sional subspaces then ∗M will contain some infinite hyperfinite dimensional
subspaces.

The way to visualise the resulting nonstandard universe is as follows.

R ∗R

V = V (R) V (∗R)
∗V (R)

A ∗A

� �

�
Standard
objects

(= internal
objects)

External objects

The Nonstandard Universe

The nonstandard universe is in fact the collection
4 We are now taking the view that all mathematical objects are sets.
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∗V = {x : x ∈ ∗M for some M∈ V}

consisting of all new and old members of sets in V. Although ∗V ⊂ V (∗R), it
is crucial to realise that ∗V is not the same as V (∗R). Sets in ∗V are known
as internal sets.

One way5 to construct ∗V is by means of an ultrapower

VN/U

although there is a little more work to do (compared to the corresponding
construction of ∗R). The set membership relation ∈ that gives the structure
(V,∈), when extended pointwise to the ultrapower VN/U , gives a “pseudo-
membership” relation E, say, resulting in the structure

(VN/U , E).

It is then necessary to take the “Mostowski collapse” of this structure, which
constructs simultaneously the collection ∗V and an injection

i : (∗V,∈) → (VN/U , E).

Although i is not surjective, its range includes the equivalence class of each
constant sequence, and then ∗M is defined by

∗M = i−1((M,M,M, . . .M)/U).

The key property of the nonstandard universe ∗V is a Transfer Principle
which again indicates precisely which properties of the superstructure V are
inherited by ∗V.

Theorem 1.8 (The Transfer Principle) Suppose that ϕ is a bounded quan-
tifier statement. Then ϕ holds in V if and only if ∗ϕ holds in ∗V.

A bounded quantifier statement (bqs) is simply a statement of mathe-
matics that can be written in such a way that all quantifiers range over a
prescribed set. That is, we have subclauses such as ∀x ∈ A and ∃y ∈ B but
not unbounded quantifiers such as ∀x and ∃y. Most quantifiers in mathemat-
ical practice are bounded (often only implicitly in exposition). A bqs ϕ may
also contain fixed sets M from V, which will be replaced in ∗ϕ by ∗M.

Members of internal sets are internal (this follows easily from the construc-
tion) and since the sets ∗M are also internal, it follows that the information
we obtain from the Transfer Principle is entirely about internal sets. To illus-
trate, the Transfer Principle tells us that any internal bounded subset of ∗R

5 This sketch of a construction of ∗
V can be skipped without any loss – it is included

to show that a nonstandard universe is a very down-to-earth and non-mysterious
mathematical construct.
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has a least upper bound, whereas this can fail for external6 sets. For example,
the set N is a subset of ∗R that is bounded (by any infinite hyperreal) but has
no least upper bound – from which we deduce that N is external. Incidentally
this demonstrates that there actually are external sets – i.e. V(∗R) \ ∗V 	= Ω.

An easy application of the Transfer Principle gives the following very
useful properties.

Proposition 1.9 Let A ⊆ ∗R be an internal set.
(a) (Overflow) If A contains arbitrarily large finite numbers then it also

contains an infinite number;
(b) (Underflow) If A contains arbitrarily small positive infinite7 numbers

then it contains a positive finite number.

Taking reciprocals gives a corresponding pair of principles for the set of in-
finitesimals.

As with ∗R it is possible (and quite convenient) to take an axiomatic
approach to ∗V, which simply postulates the existence of a set ∗V and a
mapping ∗ : V → ∗V that obeys the Transfer Principle. For most purposes
(and certainly the construction of Loeb measures) one further assumption is
needed, which we now discuss.

1.2.3 ℵ1-saturation

A nonstandard universe constructed as a countable ultrapower has an addi-
tional property called ℵ1-saturation, which we highlight here because of its
importance.

Definition 1.10 A nonstandard universe ∗V is said to be ℵ1-saturated if the
following holds:

if (Am)m∈N is a countable decreasing sequence of internal sets with each
Am 	= Ω, then

⋂
m∈N Am 	= Ω.

Theorem 1.11 A nonstandard universe ∗V constructed as a countable ultra-
power is ℵ1-saturated.

Proof (Sketch) Each set Am is represented by a sequence of standard sets
(Xm,n)n∈N. Since each Am is nonempty and the sequence is decreasing, then
for U-almost all8 n we have Xm+1,n ⊆ Xm,n and Xm,n 	= Ω. By a systematic
modification of the sets Xm,n on a U-small9 set of indices n we may assume
that Xm+1,n ⊆ Xm,n and Xm,n 	= Ω for all n and m. Now pick xn ∈ Xn,n

6 an external set is one that is not internal
7 that is, for every positive infinite x ∈ ∗

R there is an element a ∈ A with a infinite
and a < x

8 that is, the set {n : Xm+1,n ⊆ Xm,n} belongs to U .
9 i.e. a set that is not in the ultrafilter U .
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and let y = (xn)U be the element represented by this sequence. Then y ∈ Am

for every m since xn ∈ Xm,n for n ≥ m. ��

ℵ1-saturation is a kind of compactness property that is essential for the
Loeb measure construction. For the rest of these lectures we assume
that ∗V is a nonstandard universe that is ℵ1-saturated.

It is possible to build nonstandard universes with stronger saturation
type properties, by an extension of the techniques discussed above. These are
needed in some applications of Loeb measures involving topological spaces
that do not have a countable sub-base, and in other “non-separable” mathe-
matical applications.

An equivalent and very useful formulation of ℵ1-saturation, known as
countable comprehension, goes as follows.

Countable comprehension Given any sequence (An)n∈N of internal sub-
sets of an internal set A, there is an internal sequence10 (An)n∈∗N of subsets
of A that extends the original sequence.

To see that ℵ1-saturation implies countable comprehension, apply ℵ1-
saturation to the sets Bm consisting of internal sequences (Cn)n∈∗N with
Cn = An for n ≤ m. The reverse implication is proved using the overflow
principle. (The reader may like to try proving this as an exercise.)

1.2.4 Nonstandard topology

We gather together here some of the basic nonstandard topological notions
that will be referred to later.

First, we note that the idea of being infinitely close generalises to any
topological space, extending the idea of a monad. Recall that for a ∈ R the
monad of a is the set monad(a) = {x ∈ ∗R : x ≈ a}.

More generally we have:

Definition 1.12 Let (X, T ) be a topological space.
(i) For a ∈ X the monad of a is

monad(a) =
⋂

a∈U∈T

∗U.

(ii) If x ∈ ∗X, we write x ≈ a to mean x ∈ monad(a). (Note that in general
this is not a symmetric relationship.)

(iii) x ∈ ∗X is nearstandard if x ≈ a for some a ∈ X.
(iv) ns(Y ) is the set of nearstandard points in Y , for any Y ⊆ ∗X.
(v) st(Y ) = {a ∈ X : x ≈ a for some x ∈ Y }; this is called the standard

part of Y .
10 that is, an internal function with domain ∗

N.
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The idea of the pointwise standard part mapping for ∗R generalizes to
Hausdorff spaces because of the next result.

Proposition 1.13 A topological space X is Hausdorff if and only if

monad(a) ∩monad(b) = Ω for a 	= b, a, b ∈ X.

Proof An easy exercise. ��
This means that for Hausdorff spaces we can define the standard part

mapping
st : ns(∗X) → X

by
st(x) = the unique a ∈ X with a ≈ x.

The following notation is often used:

◦x = st(x).

If necessary we write stX or stT to denote the space or topology concerned.
The following is another important notion that plays a key rôle in con-

structing solutions to differential equations of all kinds.

Definition 1.14 Suppose that Y is a subset of ∗X for some topological
space X, and F : ∗X → ∗R is internal. Then F is said to be S-continuous on
Y if for all x, y ∈ Y we have

x ≈ y =⇒ F (x) ≈ F (y).

The importance of this notion is seen in the following result.

Theorem 1.15 If F : ∗R → ∗R is S-continuous on an interval ∗[a, b] for real
a, b, and F (x) is finite for some x ∈ ∗[a, b], then the standard function defined
on [a, b] by

f(t) = ◦F (t)

is continuous, and ∗f(τ) ≈ F (τ) for all τ ∈ ∗[a, b].

Remark This theorem shows that S-continuous functions in ∗C[a, b]are pre-
cisely those that are nearstandard in the uniform topology on C[a, b], and
the function f defined above is the standard part ◦F for this topology.

One final result from general nonstandard topology that we will need is:

Proposition 1.16 Let (X, T ) be separable, Hausdorff. Suppose that Y ⊆ ∗X
is internal, and A ⊆ X. Then

(a) st(Y ) is closed,
(b) if X is regular and Y ⊆ ns(∗X) then st(Y ) is compact,
(c) st(∗A) = A (the closure of A),
(d) if X is regular, then A is relatively compact iff ∗A ⊆ ns(∗X).
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Remark The condition that X should be separable in Proposition 1.16
can be omitted if the nonstandard model has more saturation – namely κ-
saturation (see the Remark at the end of the previous section), where the
topology on X has a base of cardinality κ. However, in all our applications
the relevant spaces X are separable, and so ℵ1-saturation (which we have in
our model) is sufficient.

1.3 Construction of Loeb Measures

A Loeb measure is a measure constructed from a nonstandard measure by the
following construction of Peter Loeb [71]. We confine our attention in these
lectures mainly to finite (or bounded) Loeb measures.

Suppose that an internal set Ω and an internal algebra A of subsets of
Ω are given, and suppose further that µ is a finite internal finitely additive
measure on A. This means that µ is an internal mapping

µ : A → ∗[0,∞)

with µ(A∪B) = µ(A)+µ(B) for disjoint A, B ∈ A, and that µ(Ω) is finite.11

Thus µ(A) is finite for each A ∈ A, so we may define the mapping

◦µ : A → [0,∞)

by ◦µ(A) = ◦(µ(A)). Clearly ◦µ is finitely additive, so that (Ω,A, ◦µ) is a
standard finitely additive measure space.

In general this is not a measure space, because A is not σ-additive unless
A is finite.

Nevertheless, if (An)n∈N is a family of sets from A, then the set
⋃

n∈N An

is almost in A. It differs from a set in A by a null set (a notion to be defined
shortly); see the Key Lemma (Lemma 1.19) and its corollary below. This is
what lies at the heart of the following fundamental result proved by Loeb.

Theorem 1.17 There is a unique σ-additive extension of ◦µ to the σ-algebra
σ(A) generated by A. The completion of this measure is the Loeb measure
corresponding to µ, denoted µL and the completion of σ(A) is the Loeb σ-
algebra, denoted by L(A).

Proof For a quick proof we can apply Caratheodory’s extension theorem.
It is only necessary to check σ-additivity of ◦µ on A. Suppose that (An)n∈N

is a sequence of pairwise disjoint sets from A such that

A =
⋃
n∈N

An ∈ A.

11 It also means of course that all sets in A are internal
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By ℵ1-saturation (applied to the decreasing sequence of sets A \
⋃m

n=1An )
there is m ∈ N such that ⋃

n∈N

An =
m⋃

n=1

An.

So Ak = Ω for k > m, and

◦µ

(⋃
n∈N

An

)
= ◦µ

(
m⋃

n=1

An

)
=

m∑
n=1

◦µ(An) =
∑
n∈N

◦µ(An),

using finite additivity. Caratheodory’s theorem (see [88] for example) now
gives the result. ��

It is quite straightforward and rather more illuminating to prove Loeb’s
theorem from “first principles” and here is one way to proceed – based around
the idea of a Loeb null set. (See [29] for full details of this approach.)

Definition 1.18 Let B ⊆ Ω (not necessarily internal). We say that B is a
Loeb null set if for each real ε > 0 there is a set A ∈ A with B ⊆ A and
µ(A) < ε.

The following result makes it clear that A is almost a σ-algebra.

Lemma 1.19 (Key Lemma) Let (An)n∈N be an increasing family of sets,
with each An in A, and let B =

⋃
n∈N An. Then there is a set A ∈ A such

that
(a) B ⊆ A;
(b) ◦µ(A) = limn→∞

◦µ(An);
(c) A \B is null.

Proof Let α = limn→∞
◦µ(An). For each finite n,

µ(An) ≤ ◦µ(An) +
1
n
≤ α+

1
n
.

Now, using ℵ1-saturation, take an increasing internal sequence (An)n∈∗N of
sets in A extending the sequence (An)n∈N. Overflow gives an infinite N such
that

µ(AN ) ≤ α+
1
N
.

Let A = AN . Then (a) holds because A ⊇ An for each finite n. Moreover,
µ(An) ≤ µ(A) for each finite n, so ◦µ(An) ≤ ◦µ(A) ≤ α, giving ◦µ(A) = α,
which is (b). Moreover, ◦µ(A\An) = ◦µ(A)−◦µ(An) → 0. Now A\B ⊆ A\An

so A \B is null. ��

From this Key Lemma, it is clear that A is almost a σ-algebra – and in
fact it is a σ-algebra modulo null sets. The following makes this precise.
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Definition 1.20 (i) Let B ⊆ Ω. We say that B is Loeb measurable if there
is a set A ∈ A such that A∆B12 is Loeb null. Denote the collection of all
Loeb measurable sets by L(A).

(ii) For B ∈ L(A) define

µL(B) = ◦µ(A)

for any A ∈ A with A∆B null, and call µL(B) the Loeb measure of B.

It is then quite straightforward to prove:

Theorem 1.21 L(A) is a σ-algebra, and µL is a complete (σ-additive) mea-
sure on L(A).

The measure space Ω = (Ω,L(A), µL) is called the Loeb space given by
(Ω,A, µ), and L(A) is called the Loeb algebra. Of course L(A) depends on
both A and µ, so strictly we should write L(A, µ), but usually it is clear
which measure is intended. If µ(Ω) = 1 then Ω is a Loeb probability space
and µL is the Loeb probability measure given by µ.

The following are alternative characterisations of Loeb measurable sets,
and are often taken as the fundamental definition (see [3], [20] or [69] for
example). First some definitions are required.

Definition 1.22 Let B ⊆ Ω (not necessarily internal).
(i) B is µ-approximable if for every real ε > 0 there are sets A,C ∈ A

with A ⊆ B ⊆ C and µ(C \A) < ε.
(ii) The inner and outer Loeb measure of B, µ(B) and µ(B) are given by

µ(B) = sup{◦µ(A) : A ⊆ B, A ∈ A}

µ(B) = inf{◦µ(A) : A ⊇ B, A ∈ A}

Then we have

Theorem 1.23 The following are equivalent:
(a) B is Loeb measurable.
(b) B is µ-approximable.
(c) µ(B) = µ(B).

12 A∆B is the symmetric difference (A \ B) ∪ (B \ A)
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Loeb counting measure

For a simple illustration of the Loeb construction (but one which has far
reaching applications) consider the Loeb counting measure, as follows. Let
Ω = {1, 2, . . . , N} where N ∈ ∗N \ N, so that Ω is a infinite hyperfinite set
(necessarily internal), and let ν be the counting probability measure on Ω,
defined by

ν(A) =
|A|
|Ω| =

|A|
N

for A ∈ ∗P(Ω) = A, say.13 Here |A| denotes the number14 of elements in
A. Note that ∗P(Ω) is a proper subset of P(Ω), since, for example, the set
N ∈ P(Ω) \ ∗P(Ω), which in turn shows that A is not a σ-algebra. The Loeb
counting measure νL is the completion of the extension to σ(A) of the finitely
additive measure ◦ν.

1.3.1 Example: Lebesgue measure

A first simple application of Loeb measure is an intuitive construction of
Lebesgue measure. First we define the hyperfinite (time)15 line T correspond-
ing to the interval [0, 1].

Definition 1.24 Fix N ∈ ∗N \ N and let ∆t = N−1. The hyperfinite time
line (based on ∆t, for the interval [0, 1]) is the set

T = {0, ∆t, 2∆t, 3∆t, . . . , 1−∆t}.

(In applications hyperfinite time lines may be taken with different end points,
according to need.)

We will use sanserif symbols t, s for elements of T to distinguish them
from those in [0, 1].

Theorem 1.25 Let νL be the Loeb counting measure on the hyperfinite time
line T. Define

(i) M = {B ⊆ [0, 1] : st−1
T (B) is Loeb measurable}, where st−1

T (B) =
{t ∈ T : ◦t ∈ B}.

(ii) λ(B) = νL(st−1
T (B)) for B ∈M.

Then ([0, 1],M, λ) is Lebesgue measure (i.e. M is the Lebesgue comple-
tion of the Borel sets B[0, 1], and λ(B) is the Lebesgue measure of B ∈M.)
13 An application of the Transfer Principle tells us that this is the collection of all

internal subsets of Ω.
14 The Transfer Principle tells us that for internal subsets A of Ω there is a unique

M ∈ ∗
N, M ≤ N , such that there is an internal bijection F : {1, 2, . . . , M} → A

– and this M is what is meant by |A|. Equivalently, | · | is the extension to ∗
V of

the standard function | · | that gives the cardinality of finite sets.
15 This has become the conventional terminology for this discrete representation of

the interval [0,1] when it is used to represent time.
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Proof (Sketch) It is routine to check thatM is a σ-algebra that contains each
standard interval [a, b] (since st−1

T ([a, b]) =
⋂

n∈N

(∗[a− 1
n , b+

1
n ]∩T

)
, which is

a countable intersection of internal sets), and that λ is a complete probability
measure on M. Showing that λ is translation invariant and λ([a, b]) = b− a
is straightforward, so that ([0, 1],M, λ) is an extension of Lebesgue measure.
Now take B ∈M, and an inner approximation A ⊆ st−1

T (B) with A internal.
Then the set st(A) is a closed inner approximation of B, and this suffices to
show that B is Lebesgue measurable. ��

This result is a particular case of a general theorem of Anderson [6] that
shows how any Radon measure on a Hausdorff space can be represented by a
hyperfinite Loeb counting measure. A famous example of this is Anderson’s
representation of Wiener measure, below. A less well known but very pleasant
example is David Ross’ very intuitive construction of Haar measure16, as
follows (taken from [85, 87]).

1.3.2 Example: Haar measure

LetG be a compact group, and take an internal infinitesimal neighbourhood17

V of 1. Take a minimal ∗open coverΩ of ∗G consisting of sets that are translates
of V . So Ω = {V1, . . . , VN} say with each Vi = giV for some gi ∈ ∗G. Let νL

be the Loeb counting probability measure on Ω. For Borel sets B ⊆ G define

m(B) = νL(st−1
Ω (B))

where stΩ : Ω → G is the generalisation of the standard part mapping18 to
this context. Then m is Haar measure on G.

To see this, first it routine to show that m is a Borel probability measure
on G; the other required property is that m should be translation invariant
– that is, m(B) = m(gB) for each B ∈ B and g ∈ G. It is sufficient to show
that m(B) ≤ m(gB), and for this take an internal set A ⊆ st−1

Ω (B). Let
C = {Vj : Vj ∩gVk 	= Ω for some Vk ∈ A} and note that C ⊆ st−1

Ω (gB). It is
easy to check that the collection (Ω \A)∪ g−1C is a cover of ∗G by sets that
are translates of V , so by minimality of the collection Ω this gives |C| ≥ |A|.
Thus m(gB) ≥ m(B) as required. ��

1.3.3 Example: Wiener measure

Perhaps the best known measure construction using Loeb measure theory is
Anderson’s construction [5] of Wiener measure, which we now describe. Recall
16 Haar measure on a compact group is the unique probability measure that is

invariant under multiplication by group elements.
17 This means that V ⊂ ∗U for each open neighbourhood U of 1.
18 Actually we have the mapping stG : ∗G → G, but since V is an infinitesimal

neighbourhood, the set stG(Vi) is a singleton for each i, so it makes sense to
define stΩ : Ω → G.



18 1 Loeb Measures

that Wiener measure W on C = C0[0, 1] (the set of continuous functions x
with x0 = 0) is the unique Borel probability on C such that

W ({x : xt − xs ∈ B}) =
1

(2π(t− s)) 1
2

∫
B

exp
(

−y2

2(t− s)

)
dy

for s < t and Borel B ⊂ R, and such that disjoint increments xt−xs of paths
x ∈ C are independently distributed under W .

Take the hyperfinite time line T = T ∪ {1}, where T is as above and let
CN be the set of all polygonal paths B(t)t∈T filled in linearly between the
time points t ∈ T, with B(0) = 0 and

B(t +∆t)−B(t) = ∆B(t) = ±
√
∆t.

Let WN =counting probability on CN , giving the internal probability space

(CN , AN , WN )

where AN = ∗P(CN ). This gives the corresponding Loeb space

Ω = (CN , L(AN ), PN )

where PN = (WN )L.

∆t 5∆t 10∆t 15∆t

−2
√

∆t

−
√

∆t

0

√
∆t

2
√

∆t

3
√

∆t

−3
√

∆t

An infinitesimal random walk
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Theorem 1.26 (Anderson) (a) For a.a.19 B ∈ CN , B is S-continuous,
and gives a continuous path b = ◦B ∈ C.

(b) For Borel D ⊆ C

W (D) = PN (st−1(D))

is Wiener measure.20

(c) Writing Ω = CN and ω instead of B for a generic point in Ω, the
process b : [0, 1]×Ω → R defined by

b(t, ω) = ◦ω(t)

is Brownian motion on the probability space Ω.

This is arguably the most intuitive of all the many constructions of Brow-
nian motion/Wiener measure, and captures precisely the stochastic analyst’s
rule of thumb

“db2 = dt”,

since we really do have ∆B2 = ∆t. Anderson [5] used it to give an ele-
mentary proof of Donsker’s invariance principle, together with a pathwise
construction of the Itô integral and an intuitive proof of Itô’s Lemma. His
construction opened the way for a large number of important applications in
stochastic analysis and related fields, either directly or as an inspiration in
more general situations. One of the first and most important of these, due to
Keisler [61] is the idea of solving stochastic differential equations by means
of hyperfinite difference equations. The paper [63] indicates some of the more
recent developments in this area. We will discuss these ideas later (see sec-
tion 1.5.3 below, and also Lecture 2), after we have outlined the basics of
Loeb integration theory. First it is necessary to consider Loeb measurable
functions.

1.3.4 Loeb measurable functions

Suppose we have a Loeb space Ω = (Ω,L(A), µL) constructed from the
internal space (Ω,A, µ). A Loeb measurable function f : Ω → R is simply
a function that is measurable in the conventional sense with respect to the
Loeb algebra L(A). That is, f−1(] − ∞, a]) ∈ L(A) for every real interval
[a, b].

There is of course another concept of measurable function, given by the
transfer of the standard definition. A function F : Ω → ∗R is ∗measurable
if F is internal and F−1([α, β]) ∈ A for every hyperreal interval [α, β] (with
α, β ∈ ∗R). The fundamental connection between these two notions is as
follows.
19 with respect to the Loeb measure PN of course.
20 The standard part mapping here is the restriction to CN of the mapping st :

∗C → C for the uniform topology – see section 1.2.4 above.
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Theorem 1.27 Let f : Ω → R. Then the following are equivalent.
(a) f is Loeb measurable;
(b) there is a ∗measurable function F : Ω → ∗R such that

f(ω) ≈ F (ω)

for almost all ω ∈ Ω (with respect to the Loeb measure µL).21

For a proof see [29], [87], or the original paper of Anderson [6], who proved
the result for measurable functions into a second-countable Hausdorff space.
David Ross has extended this further to include all metric spaces [86].

Definition 1.28 A function F as given by Theorem 1.27 is called a lifting
of f ; that is, a lifting (with respect to µL) of a function f : Ω → R is an
internal ∗measurable function F : Ω → ∗R such that

f(ω) ≈ F (ω)

for almost all ω ∈ Ω (with respect to the Loeb measure µL).

A general lifting result that is very useful is Anderson’s ‘Luzin’ theorem
[6].

Theorem 1.29 Let (X, C, µ) be a complete Radon space and suppose that
f : X → R is measurable. Then ∗f is a lifting of f with respect to µL. That
is,

∗f(x) ≈ f(◦x)

for (∗µ)L almost all x ∈ ∗X.

Remarks 1. The kind of lifting given by this theorem is known as a two-legged
lifting, to distinguish it from the kind of lifting in Definition 1.28.

2. Anderson actually established this result for the situation where the
range of f is any Hausdorff space with a countable base of open sets.

1.4 Loeb Integration Theory

Given a Loeb space Ω = (Ω,L(A), µL) and its originating internal space
(Ω,A, µ), there are two integrals to consider. First, there is the internal
integral ∫

Ω

Fdµ

21 This result also holds for extended real valued functions f : Ω → R provided we
adopt the terminology ◦x = ±∞ and hence x ≈ ±∞ if x ∈ ∗

R is positive (resp.
negative) infinite.
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for any (internal) ∗integrable function F : Ω → ∗R. The value of this integral
is a hyperreal that is given by the transfer of the construction of the integral
on a standard space.

Secondly there is the classical Lebesgue integral∫
Ω

fdµL

defined in the usual way for a Loeb integrable function f : Ω → R: the
term Loeb integrable function f means simply that f is integrable (in the
conventional sense) with respect to the Loeb measure µL on Ω.

Loeb integration theory gives the connection between these two integrals.
Its importance stems from the fact that the internal integral

∫
Fdµ may

be quite simple (for example a hyperfinite sum) while a closely related Loeb
integral can represent a general standard integral (such as a Lebesgue integral
on the real line or a Wiener integral). Here are the details.

Theorem 1.30 If F is a finitely bounded internal measurable function then

◦∫
Fdµ =

∫
◦FdµL.

Corollary 1.31 If F is a (finitely) bounded lifting of a Loeb measurable f ,
then ∫

fdµL =
◦∫
Fdµ.

We cannot in general expect equality of ◦∫ Fdµ and
∫ ◦FdµL since F may

be large on a set of infinitesimal measure, as in the following example.

Example Consider Ω = ∗[0, 1] and define F : ∗[0, 1] → ∗R by

F (τ) =
{
K for τ ≤ 1

K
0 otherwise.

Let Λ denote ∗Lebesgue measure. Then ◦F (τ) = 0 almost everywhere with
respect to ΛL, and hence

∫ ◦FdΛL = 0. But
∫
FdΛ = 1.

We always have

Theorem 1.32 For any internal A-measurable F with F ≥ 0∫
◦FdµL ≤

◦∫
Fdµ,

where we allow the value ∞ on either side.
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To obtain equality of ◦∫ Fdµ and
∫ ◦FdµL it is necessary to have some

condition on F akin to standard integrability — roughly, so that F is not too
big on small sets. The following is the appropriate condition.

Definition 1.33 Let a function F : Ω → ∗R be A-measurable and internal
and µ an internal finite measure. Then F is S-integrable if

(i)
∫

Ω
|F |dµ is finite,

(ii) if A ∈ A and µ(A) ≈ 0, then
∫

A
|F |dµ ≈ 0.

Note If µ is not finite an extra condition has to be added:
(iii) if A ∈ A and F ≈ 0 on A, then

∫
A
|F |dµ ≈ 0.

This is always satisfied for a finite measure µ. If F ≈ 0 on A and µ(A) 	= 0,
then for any 0 < ε ∈ R we have |F | < ε. Hence

∫
A
|F |dµ < εµ(A), which is

enough since µ(A) is finite.

The function in the example above is not S-integrable because A = [0, 1
K ]

has Λ(A) ≈ 0 but
∫

A
FdΛ = 1.

Note that F is S-integrable if and only if its positive and negative parts
F+ and F− are S-integrable, and equivalently if |F | is S-integrable.

The next result shows the importance of S-integrability.

Theorem 1.34 Let F : Ω → ∗R be A-measurable with F ≥ 0. Then the
following conditions are equivalent:

(a) F is S-integrable,
(b) ◦F is Loeb integrable and

◦∫
Fdµ =

∫
◦FdµL.

The following is an equivalent formulation of S-integrability (the proof is
left as an exercise).

Proposition 1.35 An internal function F is S-integrable if and only if for
all infinite K ∫

|F |>K

|F |dµ ≈ 0.

To complete the basic theory of Loeb integration we have:

Theorem 1.36 Let f : Ω → R be Loeb measurable. Then f is µL-integrable
if and only if it has an S-integrable lifting F : Ω → ∗R.

Definition 1.37 We say that F : Ω → ∗R is SLp (p > 0) if |F |p is S-
integrable (so SL1 means S-integrable).

Here is a very useful test for S-integrability isolated by Lindstrøm [68]
and frequently applied in the case p = 2.
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Theorem 1.38 Suppose µ(Ω) < ∞. If F : Ω → ∗ R is internal, A-
measurable, and ∫

Ω

|F |pdµ <∞

for some p > 1, p ∈ R, then F is S-integrable.

1.5 Elementary Applications

As a warm up for the more substantial applications of Loeb measures in later
lectures, we present here a few simple illustrations of their power.

1.5.1 Lebesgue integration

Recall the hyperfinite time set T defined above (Definition 1.24), which car-
ries the counting Loeb measure νL. For any function f : [0, 1] → R we may
define a corresponding function f̂ : T→ ∗R by

f̂(t) = f(◦t).

The characterisation (or definition) of Lebesgue measure given by Theorem
1.25, combined with Theorem 1.27 yields immediately:

Theorem 1.39 The following are equivalent:
(a) f is Lebesgue measurable;
(b) f̂ is Loeb measurable (wrt νL);
(c) there is an internal function F : T→ ∗R (a lifting of f̂) such that for

a.a. t ∈ T
f(◦t) = ◦F (t)

The lifting F of f̂ is a two-legged lifting in the sense described earlier.
Now apply Theorem 1.36 to give the following pleasant characterisation

of the Lebesgue integral.

Theorem 1.40 Suppose that f, f̂ are as above. Then the following are equiv-
alent:

(a) f is Lebesgue integrable;
(b) f̂ is Loeb integrable;
(c) there is an S-integrable function F : T→ ∗R that is a lifting of f (and

f̂).
If any of (a)–(c) holds then∫ 1

0
fdλ =

∫
T
f̂dνL = ◦

∑
t∈T

F (t)∆t,

the summation term
∑

t∈T F (t)∆t being another way of writing
∫
T Fdν.
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1.5.2 Peano’s Existence Theorem

The above characterisation of the Lebesgue integral as a hyperfinite sum leads
naturally to the method of hyperfinite difference equations for solving ODEs
– an appealing technique pioneered by Keisler and extended to great effect
especially for stochastic differential equations – see [61]. Here is an outline of
a proof of Peano’s fundamental existence theorem using this technique.

Theorem 1.41 (Peano) Suppose that f : [0, 1] × R → R is bounded, mea-
surable, and continuous in the second variable, and let x0 ∈ R. Then there is
a solution to the differential equation

dx(t) = f(t, x(t))dt
x(0) = x0

(1.1)

(Of course, what is meant is really the corresponding integral equation.)

Proof Without any loss of generality we may assume that x0 = 0 (other-
wise consider the equation for x(t)−x0). Suppose that |f | ≤ c. An extension
of the Lifting Theorem 1.27 is used (see below for details) to obtain an in-
ternal function F : T × ∗[−c, c] → ∗R such that |F | ≤ c and for almost all
t ∈ T

F (t, X) ≈ f(◦t, ◦X) (1.2)

for all |X| ≤ c.
The hyperfinite difference equation corresponding to (1.1) is now

∆X(t) = F (t, X(t))∆t,

where ∆X(t) = X(t+∆t)−X(t), together with the initial condition X(0) =
0. This is an internal equation for an internal function X : T → ∗R, with
solution X(t) defined recursively by{

X(0) = 0
X(t +∆t) = X(t) + F (t, X(t))∆t.

Then X is S-continuous, and |X(t)| ≤ ct ≤ c for all t ∈ T. So we may define
a continuous function x : [0, 1] → R by

x(t) = ◦X(t)

for any t ≈ t. Clearly |x(t)| ≤ c. To see that x(t) is a solution, observe that,
by (1.2) and the definition of x, for almost all t ∈ T

F (t, X(t)) ≈ f(◦t, ◦X(t)) = f(◦t, x(◦t))

which means that the function G(t) = F (t, X(t)) is a lifting of the function
g(t) = f(t, x(t)). So, applying Theorem 1.40 to g(t) and its lifting G(t) we
have (putting t = ◦t)



1.5 Elementary Applications 25

x(t) = ◦X(t) = ◦
∑
s<t

F (s, X(s))∆t

=
∫ t

0
f(s, x(s))ds

as required.
The lifting F above satisfying (1.2) is obtained as follows. Define the

measurable function f̂ : [0, 1] → C([−c, c]) by

f̂(t)(z) = f(t, z).

for |z| ≤ c. From this we obtain (using Theorem 1.25) a Loeb measurable
function f̌ : T → C([−c, c]) (where T is the hyperfinite time line, endowed
with the counting measure ν as above) by

f̌(t) = f̂(◦t).

for t ∈ T. Taking the uniform topology on C([−c, c]) and the extension
of Theorem 1.27 to separable metric spaces, we obtain a lifting F̂ : T →
∗C([−c, c]) such that for almost all t ∈ T (with respect to νL)

F̂ (t) ≈ f̌(t) = f̂(◦t)

(in the uniform topology) and |F̂ | ≤ c. This means that for all such t

F̂ (t)(X) ≈ f̌(t)(◦X) = f̂(◦t)(◦X) = f(◦t, ◦X)

for all |X| ≤ c. Now define F : T× ∗[−c, c] → ∗R by

F (t, X) = F̂ (t)(X).

Then |F | ≤ c and for almost all t ∈ T

F (t, X) ≈ f(◦t, ◦X)

for all |X| ≤ c, which is (1.2).
��

A slightly different Loeb measure approach to differential equations is to
work with an infinitesimal delayed equation, and we illustrate this with an
alternative proof of the Peano theorem.
Alternative Proof of Theorem 1.41 Let ∆ = ∆t = N−1 as above, and
define an internal function X : ∗[−∆, 1] → ∗R by

X(τ) = x0 for −∆ ≤ τ ≤ 0
X(τ) = x0 +

∫ τ

0
∗f(σ,X(σ −∆))dσ for 0 ≤ τ ≤ 1

Note that X(τ) is defined recursively on [k∆, (k + 1)∆] for 0 ≤ k < N .
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Since f and hence ∗f is bounded, X is S-continuous and we can define a
standard function x : [0, 1] → R by

x(t) = ◦X(t) = ◦X(τ)

for any τ ≈ t. We claim that x(t) is a solution to equation (1.1).
Let Λ = ∗λ = ∗Lebesgue measure. Using the extension of Anderson’s Luzin

Theorem 1.29, mentioned above, and considering the function f̂ : [0, 1] →
C(R) defined by f̂(t)(z) = f(t, z) we have that for almost all τ (with respect
to ΛL)

∗f(τ, y) ≈ f(◦τ, ◦y) for all finite y ∈ ∗R.

Hence, for almost all τ ∈ ∗[0, 1]

∗f(τ,X(τ −∆)) ≈ f(◦τ, ◦X(τ −∆)) = f(◦τ, x(◦τ))

since ◦(τ−∆) = ◦τ . Now this means that G(τ) = ∗f(τ,X(τ−∆)) is a bounded
lifting of g(τ) = f(◦τ, x(◦τ)) and so for any t ∈ [0, 1]

x(t) = ◦X(t) = x0 +
◦∫ t

0
G(τ)dτ = x0 +

∫ t

0
g(τ)dLτ

where dLτ denotes integration with respect to ΛL. Since ΛL◦st−1 is Lebesgue
measure, we have∫ t

0
g(τ)dLτ =

∫ t

0
f(◦τ, x(◦τ))dLτ =

∫ t

0
f(t, x(t))dt

which shows that x(t) is a solution to equation (1.1). ��

Loeb Differential Equations
The existence of the Loeb-Lebesgue measure ∗λL on ∗R makes it possible

(and natural) to formulate and solve Loeb differential equations for the “rich”
time line ∗R. By this we mean integral equations of the following kind:

x(τ) = x0 +
∫ τ

0
f(σ, x(σ))dLσ

where f : ∗[0, 1]×R → R is Loeb measurable in τ and continuous in the second
variable. The solution x(τ) will be S-continuous and real valued, so it will
really be a continuous function. Such equations occur in the study of optimal
control theory, where it is natural to consider Loeb measurable controls.
In particular, it can be shown [55] that a general optimal control problem
will always have an optimal Loeb control, even when there is no optimal
Lebesgue control. There are close connections here with Young measures:
this was shown in the context of control theory in [31], and is discussed in
greater detail in the forthcoming paper [45].
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1.5.3 Itô integration and stochastic differential equations

The hyperfinite difference approach has been used to great effect in the so-
lution of Itô stochastic differential equations (SDEs), based on Anderson’s
hyperfinite random walk construction of Brownian motion and the Itô inte-
gral [5].

Without going into details, the Itô integral gives a meaning to the expres-
sion

I(t, ω) =
∫ t

0
f(s, ω)db(s, ω)

where b(t, ω) is Brownian motion and f(t, ω) is a certain kind of random func-
tion (an adapted function). The Itô integral I(t, ω) is a continuous stochastic
process, and is defined as an L2-limit of simpler random processes. In the
standard theory a pathwise (that is, ω-wise) definition of I is not possible.
Nevertheless Anderson [5] showed how to represent the Itô integral pathwise
as a hyperfinite sum, in a direct generalisation of the above representation of
the Lebesgue integral.

First recall Anderson’s Brownian motion b(t, ω) constructed earlier on the
Loeb space Ω = (CN , L(AN ), PN ). This came from the canonical internal
random walk B(t, ω) defined on Ω = CN by

B(t, ω) = ω(t)

Thus ∆B(t, ω) = B(t +∆t, ω)−B(t, ω) = ±
√
∆t.

A generalisation of Theorem 1.27 gives:

Theorem 1.42 Let f(t, ω) be an adapted function. Then there is a nonan-
ticipating22 lifting F : T×Ω → ∗R of f such that

f(◦t, ω) ≈ F (t, ω)

for almost all (ω, t) ∈ T×Ω.

Anderson [5] proved the following stochastic generalisation of Theorem
1.40.

Theorem 1.43 (Anderson) Let F be nonanticipating lifting of an adapted
function f as above, and define an internal hyperfinite stochastic integral
G : T×Ω →∗R by

G(t, ω) =
∑
s<t

F (s, ω)∆B(s, ω).

Then G is a nonanticipating lifting of the stochastic integral I(t, ω) =
∫
fdb

defined above. That is, for almost all ω, the function G(t, ω) is S-continuous
and
22 this means that F (t, ω) depends only on the values ω(s) for s ≤ t
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I(◦t, ω) ≈ G(t, ω)

for all t.

In [61] Keisler pioneered the use of Anderson’s representation of the Itô
integral in the solution of stochastic differential equations (SDEs), general-
ising the technique described above to prove the Peano Existence Theorem
for ODEs. Subsequently this technique has been developed by many authors,
both in solving SDEs and in applications such as optimal control theory [22]
and mathematical finance theory ([35] for example). The delay approach is
also appropriate for certain SDEs – see [21]. Loeb space methods for SDEs
have been extended to equations involving general stochastic integrals against
martingales and semimartingales, beginning with Hoover & Perkins [57] and
Lindstrøm [68].

For partial differential equations (PDEs) – or, more generally, infinite
dimensional differential equations, in addition to the above approaches there
are new possibilities for constructing solutions using hyperfinite dimensional
representation of the objects concerned (and not necessarily using hyperfinite
representation of time). The book [13] develops this idea in some detail for
the Navier–Stokes equations, which are formulated as a differential equation
in a certain separable Hilbert space H. We will discuss this in greater detail
in the next lecture – which includes some developments since the publication
of [13].

Measure valued equations on an infinite dimensional space can also be
treated successfully using hyperfinite dimensional representation, together
with the idea of nonstandard densities – and this is also touched upon in the
next lecture.
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